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Two Standards

Tree hashing (NOT this discussion)

* Binary Merkle trees for crypo applications

* Arbitrary depth of tree

 Hash based signatures, timestamping, redactable signatures, etc.
Fast parallel hashing (this discussion)

e Focused on performance

o SIMD, multicore, multiple processors, etc.

e One- or two-level trees



Parallel Hashing Goals

(It's all about performance)

We want to...
* Benefit from parallelism (SIMD and multicore)....

e ... but don't impose too many costs on weaker
machines checking hash!

* Allow enough options to get performance benefit...

e .. .but not too many to test!



Our ldeas So Far

e Limited tree depth (1-2 max)

 More levels of tree = more hash states for sequential
implementations

e Support segmentation for long messages
e Support interleaving
e Support combination of segmentation and interleaving(”?)

Note: There are many other options I'm not even covering.



Segmented Hashing
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. Break message into large

segments (16 KB +)

. Hash each segment and

store result.

. Repeat until whole

message hashed.

. Finally, hash resulting

nashes to get the final
nash value.




Segmented Hashing (2)
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Questions about Segmenting

* Which segment sizes should be ABCD =N
supported?
pp EF GH > h
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 Message size
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* Time spent in leaves vs root I ol hs
« Hash details (padding, message Y Z 0 1 > 7
block length)
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* How many segment sizes should
be supported? h[fi+nal]

e Should we have more levels of tree?



1.

Feed every Nth word into
different hash context.
Use SIMD to compute all
N hashes in parallel.
Repeat until whole
message hashed.

INnterleaved Hashing

(It's all about SIMD)

Original Message: ABCDEFGHIJKLMNOP
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Interleaving (2)

e Hash parameters bound to
particular machine's
architecture

o Size of SIMD registers
determines how many
parallel "lanes” computed

 Natural word size of
algorithm determines size of
'slices’

e Seqguential machines take
some performance hit, as do
some other SIMD machines
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Segmenting Plus Interleaving

(Many cores, each SIMD)
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Questions about Interleaving

What choices for # of lanes
should we allow?

e 48,116,327 More? Less?
What should we standardize?
* |nterleaving only?
* Segmenting+Interleaving only?
* Both?

e Neither?
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Full hash function or

compression function?

SHAKEs have sakura padding (thus support for parallel
and tree modes) built in.

Other hashes don't...and we want a generic standard
It we use full hash function....

Good news: existing libraries and hardware can be used
to do parallel hashing mode.

Bad news: collisions between sequential and parallel
modes, and between parallel modes with different
parameters!



Collisions between parallel and
seguential hashes

Input to Segmented Parallel Hash: A BCDEFGH I JKULMNOTP

If we use unaltered
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Colliding message for sequential hash: hO hl h2 h3



Our Questions

Architectures

e Should we standardize all three of these or a subset?

o Should we be looking at other architectures? (Deeper trees?)
Parameters

* Interleaving: # of parallel lanes

¢ Segmenting: size of segment

 How many options do we need?

 More options = more bugs, harder testing

What are we missing? Where are we about to go wrong?



